Test Plan for Reciprocating Internal Combustion Engines

presented to:

ICCR Coordinating Committee
Houston, Texas

presented by:

Sam Clowney, Tennessee Gas Pipeline, on behalf of the Reciprocating Internal Combustion Engine (RICE) Work Group

November 18-19, 1997

Topics

- Purpose of Briefing
- Context for Plan Development
- Test Plan Development Process
- Content of Test Plan
- Cost and Schedule

Purpose of Briefing

- Provide the Coordinating Committee background on the need for RICE emissions testing
- Inform the Coordinating Committee about the process to develop the test plan and the contents of the plan
- Provide the Coordinating Committee an opportunity to provide guidance relative to coordinating this testing with other Work Groups
- Inform the Coordinating Committee about the costs and schedule to conduct this Test Plan

Context for Plan Development (1)

- Coordinating Committee directed Work Groups to identify testing needs during March 1997 meeting
- EPA stressed that very limited funds would be available for HAPs emissions testing
- Work Group reviewed test reports for existing data
- Unexplained variability in emissions data included in ICCR Emissions Database for RICE
 - emission factors for formaldehyde emissions from natural gas-fired engines over 6 orders of magnitude
- Multiple emissions data gaps identified

Context for Plan Development (2)

- Work Group identified 3 possible goals for emissions testing under ICCR:
 - 1 acquire additional emissions data to assist the Work Group in determining the effectiveness of after-treatment control devices to reduce formaldehyde and other HAPs
 - 1 acquire additional emissions data to assist the Work Group in determining the effectiveness of combustion modifications to reduce formaldehyde and other HAPs;
 - 1 acquire additional emissions data that can assist the Work Group in determining typical emissions for engines throughout the operating range

Context for Plan Development (3)

- Work Group designed test plan around Goal #1 for the following reasons:
 - emissions data to demonstrate the effectiveness of possible MACT control devices for existing RICE is a data gap in the ICCR Emissions Database for RICE
 - Understanding the effects of combustion modifications on HAPs is in its infancy, and would require a very extensive research program to identify potential control techniques, along with confirming testing
 - EPA has endorsed the use of ICCR emissions testing dollars to achieve this goal.

Context for Plan Development (4)

- Work Group has further focused the plan to address the effectiveness of after-treatment control devices:
 - Effect on formaldehyde is primary focus
 - Effect on other HAPs is secondary focus
- Work Group added this focus for the following reasons:
 - Formaldehyde is a product of incomplete combustion and generally is the HAP emitted in the greatest quantities from RICE
 - Work Group was able to identify possible MACT for formaldehyde based on the results of emissions testing conducted by industry -there is less understanding of possible MACT for other HAPs

Process to Develop Test Plan (1 of 4)

- Emissions Subgroup formed and assigned task to identify testing needs for RICE Work Group
 - 19 members, all stakeholders represented
- First step: Identify pollutants to be tested
 - Presented to Coordinating Committee in July, comments on pollutants accepted until September 5
- Second step: Identify test methods to use

Process to Develop Test Plan

(2 of 4)

- Third Step: Address Engine Considerations:
 - Operating Conditions
 - » Based on industry experience with criteria pollutants, such as NOx, believe operating conditions can affect HAP emissions and efficiency of controls
 - » Need to conduct testing over full operating range
 - Need person with knowledge of engine operations on site to establish condition of engine
 - Need to collect adequate operating parameter data to relate operating conditions and emissions

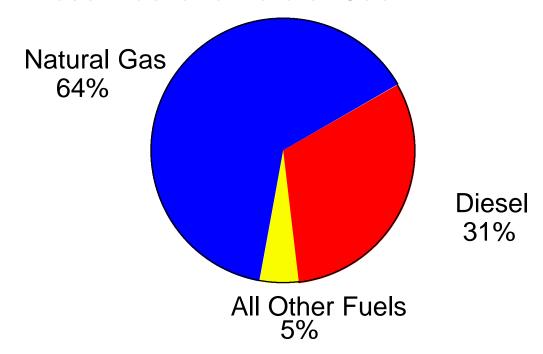
Process to Develop Test Plan

(3 of 4)

- Engine Considerations (continued)
 - Diversity of Existing Engine Population
 - » Over 3,000 possible combinations
 - Operating cycle (spark ignition or compression ignition)
 - Fuel
 - Scavenging cycle (2-stroke or 4-stroke)
 - Air-to-fuel ratio (rich or lean)
 - Make and model
 - Size
 - Driven equipment and application

Process to Develop Test Plan

(4 of 4)


- Work Group has put a lot of effort into development of this Test Plan
 - Plan developed over past 8 months
 - » Numerous conference calls to develop content
 - » Experts provided input on key components:
 - Testing and Monitoring Protocol Work Group
 - Engine and other testing experts
 - » Components of plan reviewed at May, September, & October Work Group meetings
 - » Multiple drafts of plan reviewed by Work Group
- Work Group consensus on final plan achieved on October 30, 1997

Content of Test Plan

- Four Tests Proposed
- Components of Tests:
 - Fuels, Engines, and Emission Controls to be Tested
 - Matrix of Operating Conditions
 - Pollutants to be Tested
 - Test Methods to Quantify Pollutants

Fuels to be Tested

- Two most popular fuels for stationary RICE:
 - Diesel Fuel and Natural Gas

Source: ICCR Population Database for Reciprocating Internal Combustion Engines v 2.0

Engines to be Tested

- Diesel (CI)
 - Caterpillar 3500
- Natural Gas (SI, 2- and 4-stroke, rich and lean)
 - 2-stroke, lean-burn:
 - » Clark TLA, turbocharged
 - 4-stroke, lean-burn
 - » Waukesha 7042 GL, turbocharged
 - 4-stroke, rich-burn
 - » Ingersoll Rand KVG, naturally aspirated

Controls to be Tested

- Focus on devices identified as possible maximum achievable control technology (MACT)
 - Oxidation catalysts for lean-burn engines
 - Non-selective catalytic reduction (NSCR) three-way catalysts for rich-burn engines

Engines	Control Device
Clark TLA Turbocharged	oxidation catalyst
Caterpillar 3500 Series Turbocharged	oxidation catalyst
Waukesha 7042 GL Turbocharged	oxidation catalyst
Ingersoll Rand KVG Naturally Aspirated	non-selective catalytic reduction (NSCR)

Matrix of Operating Conditions

- Work Group plans to conduct testing over multiple operating conditions:
 - Four corners of torque/speed envelope
 - Air-to-fuel ratio sensitivity
 - High speed and low load
 - Low speed and high load
 - Air manifold temperature sensitivity
 - Jacket water temperature sensitivity
 - Engine balance sensitivity

Pollutants to be Tested

- Both criteria pollutants and HAPs to be tested before and after pollution control devices
- Criteria Pollutants:
 - carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), particulate matter (PM) (diesel only)
- HAPs:
 - BTEX (benzene, toluene, ethylbenzene and xylene)
 - Aldehydes (formaldehyde, acetaldehyde acrolein)
 - Naphthalene, 1,3-butadiene, PAHs
 - n-Hexane (diesel only)
 - metals (diesel only)

Test Methods

- Test methods selected that will provide direct measurement and reporting of pollutant concentrations on-site, whenever possible
 - Direct Interface Gas Chromatograph/Mass Spectograph (GCMS) (BTEX, 1,3-butadiene, hexane)
 - Fourier Transform Infrared (FTIR) (aldehydes, NOx, CO)
 - EPA method 25A (THC and methane)
 - ISO 8178 (particulate matter)
 - CARB 429 (naphthalene and PAHs)
- Testing to be conducted to achieve lowest practical detection limits for all compounds
- Fuel testing for metals

Possible Test Sites

- All natural gas-fired units:
 - Engines and Energy Conversion Laboratory,
 Colorado State University, Fort Collins, Colorado
- Diesel unit:
 - to be determined

Costs and Next Steps

Cost to Conduct Test Plan:

\$610,000*

Next Steps:

November 1997 Work Group to submit

Plan to EPA and request funding

Fall 1997 Work Group to confirm test sites

Spring 1998 EPA Contractor to conduct testing

^{*}Testing and Monitoring Protocol Work Group provided cost estimate to conduct plan.